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Destroy this report when no longer needed., Do not return it to the
originator,




e

o

DEPARTMENT OF THE ARMY
U.S. ARMY AIR MOBILITY RESEARCH & DEVELOPMENT LABORATORY
EUSTIS DIRECTORATE
FORT EUSTIS, VIRGINIA 23604

This report was prepared by Arthur D, Little, Inc., under the terms

of Contract DAAJO2-71~C-0042. The technical monitor for thig

program was Mr. H, W, Holland of the Safety and Survivability
Division.

The purpose of this effc * was to evaluate the feasibility of
containing or restricting in-flight or postcrash fire in an
attempt to allow the crew and passengers to escape or remain
within a livable environment until the fire can be extinguished
and rescue accomplished.

During program, an evaluation was conducted of currently
availar sonflammable, fire-retardant materials. After comple~
tion « this evaluation, the most promising of these materials

were selected for application on two helicopters, which were then
subjected to full-scale fire tests. This report presents the
results of the evaluation of the various materials and also the
preparation for and outcome of the full-scai= fire tests.

The conclusions and recommendations contained in this report are
concurred in by this Directorate.
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ABSTRACT

The objective of this study was to evaluate the feasibility of
containing or restricting in-flight or postcrash helicopter

fires to allow the crew and passengers to escape or remain within
a livable enviroament until the fire could be extinguished or

the turning fuel consumed.

A romprehensive survey was made of present materials technology.
A number of materials and composites were selected and tested in
a specially designed furnace capable of providing a thermal flux
equivalent to that encountered in JP-4 fires. Final randidate
wall systems were compared for protection effectiveness, cost
and weight penalty. Various combinations of isocyanurate foams,
sodium silicate hydrate panels, a mineral insulation, and intumes-
cent mastic paints were then applied to the walls of two crash-
damaged helicopters (UH-1D and CH-47) and exposed to full-

scale fires simulating in-flight and postcrash fires. The heli-
copters were fully instrumented to measure temperature, heat
flux, smoke density, and toxic gases.

The results of the in-flight simulation tests indicated that

it should be possible to protect the habitable compartment
against a fire occurring in an adjacent compartment resulting
from a fuel or hydraulic oil line leak. Sodium silicate hydrate
panels placed on the fire side appeared to give the best
performance .

Interior temperature and heat fluxes were above tolerable levels N
for humans during the postcrash fire tests in both helicopters.

Smoke and particulates were also judged to be too high for human

tolerance Penetrations in the CH-47 walls occurred where isocy-

anurate foam could not be applied because of the presence of

wiring, air ducts and hydraulic oil tubes.

The UH-1D walls did not lend themselves to foaming because of the
absence of ribs and formers. The sodium silicate hydrate panels
used to protect the interior walls partially collapsed because of
the absence of structural support.

1t was concluded that total wall protection of existing helicopters
against postcrash fires is not feasible and should not be pursued
any further because of cost, unveliability, and lack of assurance
that the walls will maintaip their integrity in a crash.
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FOREWORD

This study was conducted by Arthur D. Little, Inc., under Contract
DAAJ02~71-C~0042, Project 1F162203A529, with the Eustis Directorate,
U.S. Army Air Mobillty Research and Development Laboratory, Fort
Eustls, Virginia.

The authors wish to acknowledge the valuable assistance provided

at Arthur D, Littl:z, Inc., by J. Oberholtzer and J. Valentine

(tox*c product analysis), R. Lindstrom (material selection),

A. Camus (instrumentation), J. Hagoplan (fire tests), and

H. Survilas (photographer). In addition, the authors are grateful
to the manufacturers who provided free samples of thelr materials

to be tested and evaluated, and %o the Fire Department of Laurence

G. Hanscom Air Force Base for allowing the use of its site for the
large-scale fire tests and for providing valuable standby assistance.
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INTRODUCTION

Although it has been possible to reduce the number of postcrash
fires of U.S. Army aircraft by the construction of crashworthy
fuel s-'stems, it will be several years before these systems are
installed in all U.S. Army aircraft. Even then, it is doubtful
that all crash fires will be eliminated.

The crew and passengers aboard such aircraft have often survived
the crash to find themselves trapped in a fire that engulfs
their ~abin, In other cases, localized fires in engine compart-
ments (r cargo areas have penetrated the walls of the habitable
cabin t» render it untenable,

Recent «lvances in cryogenic and high-temperature (reentry)
technology have brought forth a wide variety of materials with
interesting physical and chemical properties. A number of
materials are now available which combine the properties of
flame retardancy, mechan‘cal strength and insulation. It would
seem that one should be able to prevent postcrash or in-flight
deaths from fires by the appropriate selection and application of
one of these¢ new materials tc the aircraft fuselage or iInterior
partitions. Unfortunately, flame retardancy is usually imparted
to materiale by the addition of chemicals which inhibit flame
propagation. These chemicals, as well as the materials them-
selves, generate irritating smoke and toxic gaseous products
when they are heated to high temperatures. The identity ol the
toxic gases, their concentrations, and their rates of generation
are unpredictable because they are a complex function of the
rate of heating and the temperatures to which the material mav
be exposed. Thus, the selection of a protective material for
aircraft fuselages should be accompanied by realistic tests in
which smoke and toxic gases are monitored.

The objective of this study was to evaluate the feasibility of
containing or restricting in-flight or postcrash fires to allow
the crew and passengers of a helicupter to escape or remain
within a livable environment until the fire could be extinguished
and rescue accomplished,

To achieve this objective, it was desired to review data on
various flame-retardant materials and to select seveiral materials
that appeared to have the greatest potential for maintaining a
livable envi.onment within an aircraft exposed to in-flight or
postcrash fire. The thermal properties, weight, cost and




B

installation feasibility were to be examined, and a test procedure
was to be developed to evaluate and compare the behavior and
effectiveness of the selected materials (and combinations thereof)
when they were applied to helicopter fuselage skin and to interior
partition materials. The results of the experimental program
were to be used to recommend the most promising fire-retardant
material (or combination of materials) for protecting aircraft
habitable compartments. Finally, UH~1D and CH-47 helicopters

were to be examined to determine appropriate methods for applying
the selected fire protection materials and the areas that should
be protected. Two crash-damaged helicopters were then to be so
protected, instrumented and subjected to full-scale simulations

of in-flight and postcrash fires.
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LABORATORY EVALUATION PROGRAM

The objective of the laboratory test program was to screen a large
number of candidate wall materials by exposing aluminum panels
protected by tue test materials to a thermal flux equivalent to that
encountered in a large~-scale JP-4 fire, Various window materials
and vent plugging techniques were also to be evaluated.

TEST FURNACE FACILITY

The desired thermal flux level (31,000-35,000 Btu/hr 3q ft) was
obtained in a furnace, the design of which was quite similar to NASA-
Ames' T-3 Thermal Test Facility (Figure 1) but which was scaled-up

so that 16 inch x 16 inch panels could be exposed. This was done to
reduce end effects, particularly for thick samples, A stainless
steel enclosure was constructed which was used to hold most panels in
place above the horizontal furnace opening., Sketches of the test
enclosure are shown in Figures 2 and 3. Figures 4 and 5 are photo-
graphs of the Arthur D. Little (ADL) furnace and the test enclosure
in position. Thermocouples, gas-sampling tubes and a smoke density
meter were used to evaluate conditions within the enclosure. A
calibrated (NBS traceable) multichannel millivolt recorder was used
to record the data,

Chromel-Alumel thermocouples were utilized to measure the enclosure
alr temperature and the interior surface temperature of the panel
at two or three locations.

The smoke detector consisted of a light source and a photo cell.
This was calibrated using standard filters having various absorption
coefficients.

Gas samples were drawn either into evacuated glass sample bottles for
chromotographic analysis or into Kitagawa tubes. These tubes detect
the presence and measure th¢ ‘Goncentration of specific gases by the
length of the chemical c¢r”.,r ange in the packed tube.

The cond’ .0 .rior surface of the panel was noted

visually - cest through a mirror attached to &n opening

in the to, ‘f the enclosure. An electric timer was started when

the panel wa nlaced above the furnace and stopped when burn-

through was oL rved or when the test was terminated.

Tests on the candidate materials were conducted by placing
the window in a sc.:1 frame on the furnace opening so that the
flames impinged directly on the window. The time for the window
to burn through was noted.
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RESULTS OF LABORATORY TEST 'ROGRAM

The interiov surface of a .elicopter may be divided into four areas,
each of which requires purticular protection techniques. These
areas consist of the exterior aluminum wall, windows, ventilation
openings, and interior partitions.

Wall Areas

Much of the wall area in a helicopter is free of wiring and cubing so that
fire protection materials can be placed directly on the wall without
interfering with other mechanisms. However, some areas do contain
hydraulic, mechanical or electrical components, and the selected in-
sulation system should allow access to these pileces of hardware,

The materials that were evaluated for wall procection can be con-
veniently classified under the following categorics:

e Paints and coatings

¢ Inorganic or mineral insulations

o Organic foams

o Fire-protecting panels and composites
Tables I, II, III, and V summarize pertinent results of tests
on promising materials in these categories. Tables X, XI, XII, XIII,
and XIV summarize the results for all materials tested,
Data of particular concern in the test program were the time for the
flame to buin through the panel, the presence of toxic or noxious
fumes in the enclosure, and the maximum temperature of the air

in the enclosure.

Intumescent Paints and Coatings

A large number of intumescent paints and coatings, which are applied

in thicknesses from 3 mil to 1/8-inch or more, are commercially

available for fire protection. Upon heating, these materials in-

tumesce or char, forming a protective insulating layer. Table I
summarizes the furnace test results for these materials, The data

! indicate that no intumescent paint or coating could provide the

desired fire protection. While the paints did intumesce readily and

provided an insulating char, the fire gases eroded the char very

quickly, exposing the bare aluminum panel to the fire. When such paints

were used on the inside of 2 panel, they were not effective because the

panel burned through and the char could not support itself, Further-

more, most of them produced noxious fumes in the enclosure. There

is no apparent difference in the performance of the very expens.ive

N S
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paints or the less expensive types, although there are claimed
differences in weatherability and stability. The one coating that
appeared to bc potentially useful, North Amerjcan Rockwell's Larodyne,
was applied in 1/8-inch thickness to the aluminum panel and the
Larodyne side of the panel was exposed to the fire. Although it took
11 min 39 sec for the panel to burn through the first test, this
exceptional perforrance could not be duplicated. Subsequent panels
did not perform as well because the char crumbled quickly. It
appeared that if Larodyne is applied over large areas, stresses

could develop during fire exposure which would fracture the coating
and allow the rapid penetration of fire. Furthermore, Larodyne at
present does not pass military specifications for exterior coatings
and is fairly expensive.

Inorganic Insulations

Certain high-temperature inorganic (mineral) insulations are
commercially available which have the potential of affording
protection to the occupants of the helicopter without generating
any toxic gases.

Two materials from Johns-Manville called Dynaflex and Microquartz
were evaluated. Both of these materials afford good fire protec-
tion. However, being structurally weak (similar to fiberglass
blankets), they need to be held in place and they offer little aid
in filling cracks, etc. In combination with other materials, they
proved to be quite useful, Table II describes the results of tests
on Dynaflex and Microquartz felt panels.

An interesting fire protective panel developed by Badische Anilin &
Soda-Fabrik (BASF) called Brandschutzplatte (fire plate) was
evaluated. This is a 1/16-inch-thick fiberglass reinforced sodium
silicate hydrate. When heated, the water of hydration was driven
out, expanding the panel to 1/2-inch thickness. This panel provided
excellent protection when tested on the furnace. After 7 minutes,
the air temperature on the opposite side of the enclosure was only
40°C and after 12 minutes of exposure, there was no burnthrough of
the fire plate (see Table II).

Organic Foams

A variety of fire-retardant organic foams, particularly polyurethane
and polyisocyanurate foams, are available for foaming in place as
well as i.. .refoamed panel form. A large number of organic foams
were evaluated including Pyrell polyurethane foams from Scott,
polyisocyanurate (ICU) foams SS-0011/0012 from Witco, an ICU foanm
from Uniroyal, and an ICU foam developed by NASA-Ames, Table III
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summarizes the results of these tests. Excellent fire protection
(up to 10 minutes) was provided with 2 inches of NASA-Ames foam.
Such foams can easily be applied by spraying or pouring and
provide a convenient means of insulating an aircraft. Also, the
foams are self-supporting and need little or no reinforcement to
hold them in place. They appear tc¢ provide many of the desirable
requirements of a wall thermal protection system.

The formulation for the NASA-Ames ICU foam is shown in Table IV,

Fire Protecting Pdanels and Composites

Table V shows the results for some of the most effective composites
that were evaluated. Combinations which provided optimum performance
consistent with low smoke and low toxic or woxious gas levels as

well as economy involved the BASF fire plate in combination with either
inorganic insulation or Witco or NASA-Ames polyisocyanurate (ICU) foam.

Window Areas

A number of readily available window materials were evaluated by
exposing them directly to the flame in the test furnace. It was
quickly determined that helicopter windows are a weak point in the
structure and that the protection of windows from fire would require
a full-scale development study.

Table VI summarizes pertinent results on window materials. This

table also shows the results of attempts made to examine various
techniques and approaches that may be used to provide adequate thermal
protection. Working jointly with BASF, a very promising panel
consisting of 1/8-inch acrylic - 1/8-inch transparent sodium silicate
hydrate -~ 1/8-inch acrylic was developed which withstood the test
furnace for 9 minutes. The surface temperature at the end of the

test was about 75°C. Figures 6 and 7 are photographs of the two

sides of the window after the 9-minute exposure to 35,000 Btu/hr

sq ft heat flux.

Ventilation Openings

Since a helicopter is an air-breathing aircraft, ventilation openings
are provided which draw air from the exterior. In the case of a fire,
such openings could provide a path for fumes and vapors to enter the
passenger compartment. Two systems which could plug the vents when
they are exposed to heat were evaluated. One of these involves
ccating the vent interior wall or a screen inserted in the vent with
an intumescent paint or mastic. When exposed to high temperatures,
the coaring intumesces and effectively plugs the hole. In another
case, pieces of BASF fire plate were inserted in the tube in such a
way that when the fire plate expanded, it completely filled the tube.
Both of these approaches work quite well since the tube itself is not
exposed to the erosive effects of the flame.

12
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TABLE IV. NASA-AMES ICU FOAM FORMULATION

Components

Parts by Weight

Niax Polyol 34~45%
Potassium Fluoroborate
Zinc Oxide

Freon 1l%%*

pMP-30"

Mondur M.R.TT

Silicone Fluid L-5340%

100
52
52

100

70

400

\

/{ Mixture a
} Mixture B
} Mixture C

Mixture A i1s milled to 5 N.S. f{ineness then mixed with B.
Foaming occurs when A-B mixture is added to C.

* Union Carbide Corporation

T Rohm & Haas Corporation

1 Mobay Chemical Corporation

** E, I. duPont de Nemours & Co. (Inc.)
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TABLE VI. FURNACE TEST RESULTS ON WINDOW MATERIALS

Material Description

Burnthrough Time (Min:Sec)

Plexiglas GM, 1/8" (Rohm and Haas)
Plexiglas SE-3, 1/8"

Plexiglas GM, 1/4"

Plexiglas GM, 1/2"

Plexiglas SE-3, 1/2"

Plexiglas GM, 3/4"

Abcite~coated Lucite 1/8" (duPont)

Plexiglas GM, 1/8" treated
with Kellogg Urethane Varnish

Plexiglas SE-3, 1/8" treated with
Kellogg Urethane Varnish

Merlon Polycarbonate, 1/8" (G.E.)
Merlon Polycarbonate E-297, 1/8"
Two 1/8" Merlon Polycarbonate sheets

with 1/2" air space

Two 1/8" Merlon Polycarbonate sheets,
1/2" air space filled with Gillette
shaving foam

Two 1/8" Acrylic with 1/8" BASF
special transparent plate between

1:08,0:54
0:48
1:48
2:48
2:57
5:38
1:12

0:58

1:13 (1lst layer
fell in
0:44)

1:42 (1lst layer
fell in
1:06)

(Removed after
9 min, No
burnthrough of
the top Plexi-
glas layer)

17
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Interior Partitions

Since present windows are the weakest points in a helicopter, the
crew cockpit would be a highly vulnerable area in a postcrash fire.
Not only is the probability of the window breaking high, but the

large surface area of windows exposed to the fire presents a serious
fire hazard to the crew.

The only solution to this problem appeared to be an emergency door
that would be accordion~folded against the ceiling of the CH-47 or
the sidewalls of the UH-1D and clamped shut in case of postcrash
fire after the crew had climbed into the passenger compartment.
Panels consisting of an aluminum sheet (.03-inch thick) on the
cockpit side, a l-inch layer of Dynaflex and 1/16-inch BASF fire

plave on the passenger compartment side provided adequate protection
when tested on the furnace.

18
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Figure 6. Photograph of Interior Plexiglas of

Window After 9 Minutes of Fire Exposure.

Figure 7.

Photograph of Side Exposed to Fire
(Exterior Plexiglas Layer Had Been Burnt),
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SELECTION AND APPLICATION OF PROTECTIVE WALLS

SELECTION CRITERIA

In selecting the most promising wall materials for the protection of the
habitable compartments of helicopters against in-flight or postcrash
fires, the following factors were considered:

e The wall gystem must provide sufficient thermal
insulation to prevent the penetration of heat
from the fire into the habitable compartment.

® The wall must maintain its structural integrity
after aluminum skin failure.

o The materials employed should generate a minimum
of toxic or irritating gases and smoke in the
cabin when heated by the fire.

o The materials must be easy to apply to the walls
of the helicopter and must be easy to maintain
and repair.

e The materials used must be relatively light and
inexpensive.

e The wall system should provide access to wiring
and tubing along the walls and to other service
compartments,

e If applied to the helicopter exterior, the system
must pass certain military specifications re-
lating to weatherability and erosion.

The results of the furnace test program indica-ed that protective paints
and coatings applied to the exterior of a helicopter generally performed
poorly. The only promising one (Larodyne) could not be applied in place,
was relatively expensive, did not show reliable performance, and does

not pass military specifications for exterior coatings.,

By using an interior protective system, one generally expects the ex-
terior aluminum skin to be sacrificed during the fire. This is partic-
ularly important it the protective materials generate toxic or irritating
products. The absence of the skin allows these gases to propagate into
the fire rather than into the cabin.

The test program showed that a number of composite material systems may
be used for interior wall protection, Only those offering the optimum

combination of desirable qualities were selected. Table VII identifies
the basic composite wall systems used and their cost and weight penalty,

20
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As indicated, helicopter windows are presently one of the weakest points
in a helicopter crash fire, Current materials technology does not offer
a better replacement for the 1/8-inch Plexiglas window presently used,
One could increase the life of the aelicopter windows significantly by
increasing their thickness, Indeed, the test program showed that a
3/4~inch thick Plexiglas window appears to provide the necessary pro-
tection required during a postcrash fire. But the weight penalty would
be high, particularly on the UH-1D where the window surface area is

very large in comparison with the total wall area. Although this study
was not intended as a developmental program for helicopter windows, tests
on the simple approaches to window design that were considered showed
that one should be able to design a lightweight window system from exist-
ing materials that 1s capable of providing the necessary fire protection.

COMPATIBILITY WITH THE HEL1COPTER

One of the most ilwportant considerations in choosing one system over
another is its compatibility with the particular helicopter to be pro-
tected, There are marked differences between the basic structures of
the CH-47 and the UH-1D., The walls of the CH-47 have ribs and formers
which support the aluminum skin. Furnace tests on typical sections of
the CH-47 wall showed that these ribs and formers retain their integrity
during the fire even though the skin melts within a few seconds. On the
other hand, for the most part, the UH-1D cousists of flat walls, windows,
and doors, the latter consisting of a double aluminum wall. Ribs and
formers are only used in the ceiling and the floor. Thus, the approach
to protection was not the same for the two helicopters.

WALL SYSTEMS USED IN THE CH-47

0f the materlals and composites which were evaluated, two stood out as
providing the optimum combination of properties for wall protection,
Both of these systems utilized BASF fire plate as interior paneling
while either an inorganic insulation, such as Dynaflex, or an organic
foam, such as an ICU foam, was used as additional thermal insulation

in the walls behind the tire plate. The inorganic insulation blanket
was used in areas containing wiring, piping, etc., where the panels might
have to be removed for servicing of mechanical, hydraulic or electrical
components. Where no such components were present, the ICU foam was
not only easier and faster to apply than mineral insulation, but was
also capable of filling small cavities and cracks and was less expen-
cive, Laboratory tests had shown that neither tbe TCU foam nor the
Dynaflex were likely to liberate toxic fumes into the cabin since the
BASF panel provided a seal which prevented the fumes “rom reaching the
interior.

A commercial foaming company was hired to sprayv the foam in place using
off-the~shelf equipmen.. The only protlem that arose during application
ot the foam was the settling of the pigments in the polyol portion of the
mix. Installation of an agitator on the feed tank solved this problem

easily,

21
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TABLE VII. COST AND WEIGHT PENALTY OF SELECTED WALL SYSTEMS

Fire Plate/Dynaflex

Component $/ft2

Fire Plate (1/16") .75
Dynaflex (2 layers-2" each) 4.80
Fasteners .05
Joint Strip .02
Cost 5.62

Estimated Weight, 2.27 1b/ft2

Fire Plate/ICU Foam

Component §/ft?

Firve Plate (1/16") .75
ICU Foam (4") .60
Joint Strip .02
Fasteners .05
ost 1,42

Estimated Weight, 1.31 1b/ft*

Fire Plate/Dynaflex/ICU Foam

Component j!igi

Fire Plate (1/16") .75
ICU Foam (2") .30
Dynaflex (2") 2.40
Joint Strip .02
fasteners __+05
Cost 3.52

Estimated Weight, 1.79 1b/ft?
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With the exception of the floor space, areas that were protected
solely with ICU foam and fire plate were foamed up to the height
of the formers. The floor space was filled to a depth of about

4 inches with foam and no fire plate was used there. Other wall
areas which were to be protected with the combination of ICU foam
and Dynaflex had only 1 inch or so of foam applied behind the
wiring or tubing--then a layer of NDynaflex and finally fire plate.
Other areas were not foamed since these were designated to be
protected solely with Dynaflex., All windows were sealed with
aluminum (.03 inch) and treated as part of the wall, After foaming
had been completed, the foam was allowed to cure for at least 1
hour. Excess foam was then scraped to the height of the formers
before application of the fire plate panels,

The fire plate paneling was attached to the formers with Pop rivets
Metal reinforcing strips were used to prevent the rivets from pulling
through the paneling. Panels were overlapped at all joiuts. The

use of rivets in the sealing strip restrained the panels in such a
way that when heated they would intumesce to provide a tight seal.
The fire plate panels were bent to conform to the curvature of the
formers at the wall-to-ceiling junction. A door was constructed
between the front cabin and the rear compartment. The door consisted
of a layer of aluminum on the cockpit side, 1 inch of Dynaflex and

a layer of fire plate on the inside.

WALL SYSTEMS IN THE UH-ID

The systems used in the CH-47 could not be utilized in the UH-1D

helicopter. As previcusly mentioned, the UH-1D has a large window

surface area. The doors consist of a double wall of aluminum, and

most of the UH-1D walls lack the formers and ribs which are present \
in the CH-47, All the side window areas were covered with aluminum,
ICU foam was then poured into the floor space to the level of the
floor formers, The floor and wall areas were then covered with a
layer of fire plate. An aluminum wall was installed between the
cockpit and the passenger area, and it too was covered with fire
plate, Certain areas of the exterior of the helicopter were cnvered
with Albi Clad 89-X mastic, while other areas were painted with
Firehold 10 intumescent paint., Some were left uncoated. These
coatings were used to test the erosive effect of the postcrash fire.

e

UH-1D In-flight Fire Protection System

I'or the tests simulating in-flight fires, two compartments in the
rear of the UH-1D helicopter were used., These compartments had a
common wall with the habitable compartment and were approximately
11 x 26 x 3" inches in dimension. One rear compartment was
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protected with 1/8-inch Albi Clad 89-X mastic. This material was
believed to perform well in an enclosed area where the erosive
effect of the fire would be small. The mastic was applied by brush
to the bottom and sides of the compartment, A similar compartment
on the opposite side of the helicopter was protected by lining its
walls with BASF fire plate. The fire plate was fastened to the
walls with pop rivets., No¢ metal reinforcing strips were used in
this case.
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FIRE TEST PROGRAM

Four tests were conducted: two representing an in-flight fire

in a compartment adjacent to the habitable compartment of the
UH-1D helicopter and two representing postcrash fires engulfing

the two helicopters (UH-1D and CH~47) that were provided. A
general description of these tests is given below. Also given are
details of the measurements made and instrumentation used. Results
of these tests are discussed in Results (p. 45).

GENERAL DESCRIPTION OF TESTS

In-Flight Simulation Tests

The UH-1D hellcopter appeared to bte the more suitable for the
conduct of these tests. The aft section had several compartments
that could be used to simulate a fire due to a fuel or hydraulic
oil line break. These were the first tests conducted. Not only
did they provide valuable background for the conduct of the larger
scale tests and for checking the instrumentation system, but they
also allowed any damage to the UH-1D to be corrected before its
final total engulfment test,

To simulate a fuel line break fire, JP-4 was pumped at 10 1b/min
through a nozzle at the end of a copper tube into one of the aft
compartments, ignited and allowed to burn for 5 minutes. The first
test utilized the compartment protected with Albi Clad 89-X mastic
with the top of the compartment completely open. The second test
involved the fire plate lined compartment. In this case, the top
of the compartment was partially covered, leaving an opening 2
inches wide along its 26-inch length,

Figure 8 shows the compartment that was protected with BASF
fire plate. Figure 9 shows the fire in progress in the compartment
protected with Albi mastic.

CH-47 Postcrash Fire Test

The third test involved the CH-47. The protected instrumented
helicopter was transported to the test site (L. G. Hanscom Field,
Bedford, Mass.) and placed in an earthen dike about 50 feet in
diameter. This area was assumed to represent an average fuel spill
area in a crash of a CH-47. After making the necessary connections
for instrumentation, gas sampling, video~-observation, interior
lighting, etc., 1100 gallons of JP-4 (nearly a full load) were
poured into the diked area and ignited., The dike floor was
saturated with water from previous rain and was uneven. Some fuel
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Figure 8,

Figure 9.

Second In~Flight Fire Simulation
Compartment With Partial Cover Down.

e

First In~Flight Fire Test in Progress.
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was trapped underneath the helicopter. Inclement weather conditions
prevailed, with rain, sleet and snow falling throughout the test
period. Wiad of 10-20 mph was blowing along the length of the
helicopter from the cockpit toward the aft section. Figures 10-13
show the progress of the CH-47 postcrash fire.

UH-1D Postcrash Fire Test

For the final test, the protected and instrumented UH~1D

helicopter was transported to L. G. Hanscom Field and placed in a
20-foot diameter earthen dike. The dike was level and saturated
with previous rain water. Figures 14-17 show the progress of the
UH-1D postcrash fire, Excellent weather conditions prevailed. Wind
was approximately 4-6 mph and blowing across the helicopter in a
left to right direction,

SAMPLING AND MEASUREMENT OF TOXIC GASES AND SMOKE

General Discussion

Although substantial increase in crew safety was anticipated by the
use of the candidate fire protection systems that were evaluated in
the laboratory test program, the use of the candidate systems
introduced a potential hazard tn the crew from exposure to toxic
gases which might be generated when the protective materials were
exposed to fire or when there was a partial failure of the system.

The purpose of the tests which are described in this section

was to provide a semi~quantitative indication of whether or not a
potentially hazardous situation might arise in an actual fire
situation. The accurate assessment of toxicity in situations
such as this cannot be made by chemi:zal measurements alone. Infor- :
mation on the short-term (10-minute exposure) toxic hazards associated 3
with many of the gases which might be evolved is not generally
available for humans. It is also impossible to account accurately
for the many synergistic effects on toxicity which can arise when

a wide variety of toxic specles are present, especially when
compounded with thermal effects. A good assessment of toxicity

in cases such as this can only be achieved through well-controlled
and supervised tests involving animals. An evaluation of that
magnitude was neither warranted nor desired in this initial
feasibility study. For those reasons, the sampling and analytical
techniques described below were designed to provide initial insight
into the problem of potential toxicity and at the same time to
minimize unnecessary complexity and excessive cost. Toxic gas and
smoke measurements were made only in the postcrash fire simulation
tests. It was assumed that toxic gases and smoke generated during
in-flight fire will not affect the habitable compartment since the
fire occurs in another compartment and because the doors can be
opened to provide fresh air to the occupants.
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Figure 10. CH=-47 Before Postcrash Fire Test.

Figure 11, CH-47 Fire in Progress Soon After Ignition.
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Figure 12, CH-47 Fire at Maximum Intensity.

Figure 13. CH-47 Cockpit Near Conclusion of Test.

29

PR




e

Figure 14.

Figure 15.
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Ul-1D Before Postcrash Fire Test.

UH-1D Postcrash Fire After 30 Seconds.
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Figure 16.

Figure 17,

Fully Developed UH-1D Postcrash Fire
(3 minutes).

UH-1D Fire Near Conclusion (8 minutes).
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Toxic Gases of Concern

0f primary concern were the amounts of the fire gases, carbon
dioxide and carbon monoxide, which tend to build up in the cabin
interior, Oxygen depletion as a result of burning or slow oxida-
tion within the cabin was also of interest. Concentration of

toxic gases which can arise from the decomposition of the insula-
ting materials as well as from pyrolysis and combustion of fire
retardants incorporated in these materials was also to be measured.

The primary toxic species which could arise from the isocyanurate
(ICU) foam used in these test. were the nitrogen-containing
compounds -- HCN and NH,. Halogen~containing materials such as
potassium fluoroborate and halon 113 (CCl,F) are employed in the
candidate isocyanurate foam to impart flame retardancy. When
exposed to fire, these materials produced BF,, free halogen, and
hydroger halides. Since these materials are”of roughly the same
toxicity, sauples were taken and analyzed for the amount of
fluoride, chloride and bromide ions present.

Pyrolysis c¢f the isocyanurate foam also produced a variety of
higher molecular welight, nitrogen- and oxygen~containing organic
compounds of widely varying toxicity. These materials can appear
as gases or as a thick smoke (condensed liquid aerosol), as was
observed in certain of the earlier furnace tests., These heavier
materrals are produced because much of the pyrolysis to which the
intericr cabin is exposed will occur, at least initially, at
relatively low temperatures which favor formation of heavier
degradation products, Relatively higher molecular weight amines,
aldehydes, ketones, acids and unsaturated hydrocarbons can be
envisioned. Because of the large number of possible compounds

and the uncertainty as to which compounds would indeed be formed,
individual tests could not be conducted. However, in conjunction
with the taking of samples for measurement of the several gases

of particular interest, samples of smoke that arose were collected.
These heavier molecular weight materials were simply weighed to
arrive at average particular concentration over the sampling period.

Sampling Procedures

Carbon Dioxide, Carbon Monoxide, and Oxygen

Samples of these gases were taken at two points near the center of
the CH-47 helicopter cabin: the first at 1 foot above the floor
level, and the second at 4 feet above the floor. Two samples

were taken at about the 2-1/2-foot level of the UK-1D. A gas
stream for sampling carbon dioxide, carbon monoxide, and oxygen

was withdrawn from each sampling point through a separate leugth of
1/4-inch 0.D. copper tubing which extended from the cabin interior
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passed throvgh an insulated service umbilical through the fire
zone to a protected area about 70 feet from the fire zone. One
liter grab samples were taken into a glass sampling bulb from this
gas stream at 3-minute intervals during the test.

The design of the pumping and sample receiving station is shown
schematically in Figure 18. A limiting orifice bectween the
sampling bulb and vacuum pump was used to control the flow rate
through each sampling line at approximately 3 liters per minute.
The operation of the grab sampling system is described with respect
to the operation of circuit 1. The operation of circuit 2 was
identical, At the start of the test, stopcocks A and B (attached
to the sampling bulb) were opened and a gas flow of 3 liters per
minute from sampling point 1 was allowed to sweep through flask
P. At the end of 3 minutes, the initial air that had been in
flask P was completely swept out by a gas sample that was repre-
sentative of the atmosphere at sampling point 1. At this time,
stopcock B was closed, and, after waiting a few seconds for the
pressure in flask P to equilibrate at 1 atmosphere, stopcock A
was closed and stopcocks C and D opened to begin acquiring the
next sample in flask Q. While the gas stream was sweeping flask
Q, flask P was replaced by a new flask in preparation for the
acquisition of the third gas sample, and so on,

Reactive Gases

The other gases of interest, NH,, HCN, and the halogens and halides
are more reactive and would havé a strong tendency to be lost on
the surfaces of long sampling lines if one attempted to withdraw
a sample from the cabin to the sampling station as planned for
€0,, CO, and O,. For this reason, gases were trapped in 25-ml
mi%get impingeYs in which the reactive toxic gases of interest
were absorbed into appropriate reagent solutions, The impingers,
each containing 15 ml of reagent, were located in the cabin in
close proximity to the sampling point, They were installed prior
to the test, actuated just before the test began, and retrieved
from the cabin after the test had been completed.

A set of two impingers was required for each of the two sampling
points. An impinger pair along with its associated filters and
vacuum service, is shown schematically in Figure 19. For
collectin, NH,, and other amines and basic species, one of the two
impingers was filled with 0.1M sulfuric acid. The second impinger
was filled with 0.1M sodium hydroxide for trapping the acidic
species: HCN, halogens, and halides. To prevent any particulates
from entering the impinger and to obtain a sample of the particu-
lates for subsequent analysis, cach impinger was equipped with a
dual filter assembly composed of a drying tube filled with glass
wool followed by a conventional paper filter. Both filters were
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preweighed so that a second weighing after the test permitted

an estimate of the particulate concentration in the cabin to be
made. Individually calibrated orifices were installed after each
impinger to control the gas flow through each impinger at a rate
of 3 liters/min.

Gas Analysis Techniques

Carbon ﬁioxide, Carbon Monoxide, and Oxygen

These three gases were measured by temperature programmed gas/solid
chromatography using columns of molecular sieve on a gas
chromatograph. A helium carrier gas flow rate of about 80 ml/min
was used; detection was via a thermal conductivity unit maintained
at 175°C. The molecular sieve column was 2.5 feet x 0.25 inch
diameter packed with 100/110 mesh 5A° molecular sieve. This columm
was held at 60°C for the first 6 minutes of the analysis, then
heated ballistically to 170°C at a rate of about 15°/minute and
finally held at 170°C until the Co, peak emerged.

A 3-ml sample was withdrawn from the flask containing the gas
sample and injected into the chromatograph. This sample size gave
a detectability for each of the three gases of about 0.05-0.1%.

Calibrations were accomplished using appropriate gas mixtures con-
taining CO,, CO, and Op in He which were procured from a commercial
vendor, The composition of the calibration gases was certified

by the vendor to be accurate to better than + 5%.

Hydrogen Cyanide

The cyanide content of an aliquot of the sodium hydroxide impinger
sc lution was measured by using the colorimetric method for cyanide
as described in the Standard Method for Examination of Water
(American Public Health Association, 1960). This method involves
the reaction of cyanide with Chloraminc -T and then with methyl-
phenylpyrazolone to yield a blue color which is measured by
spectrophotometry. For a 30-liter gas sample (3 liters per minute
for about 10 minutes), this analytical method for a cyanide had a
sensitivity of better than 0.1 ppm HCN in the test atmosphere.

This method was standardized using accurately prepared solutions
v! reagent grade sodium cyanide.

Ammonia
Tre anonia analysis was performed on an aliquot of the sulfuric

~ id inpinger solution. The measurement utilized Chloramine-~T
w18 methvlphenylpyi«solone color reagent similar to that used
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for the cyanide analysis. The procedure is described in
"Colorimetric Determination of Nun-Metals,”" D. F. Boltz, Editor,
Interscience (1958). For a gas sample volume of 30 liters, this
method was again sensitive to less than 0.1 ppm of ammonia in the
gas sample. Standardization involved measurements of calibrated
solutions of analytical reagent grade (NH4)2804 in distilled water.

Fluoride Ion

The analysis of fluoride was made with a solid-state fluoride ion
electrode. A 2-ml aliquot of the caustic impinger sample was
pipetted into 10 ml of 15% sodium acetate solution to provide

the proper pH and ionic strength. The fluoride elect~~de has a
selectivity for fluoride over a chloride, bromide and carbonate of
at least 1000, Calibrations were carried out and checked after
every 5-6 samples using sodium fluoride standard solutions diluted
in the same way as the samples., This technique was capable of
detecting fluoride ion at less than 1 ppm and has a relative
precision of approximately + 5%.

Chloride and Bromide Ions

A silver/silver bromide electrode (prepared by electrolyzing silver
wire in dilute Hbr) was used for the direct measurement of bromide
ion in the NaOH impinger liquid. The selectivity of this method
for bromide was 300-400 over chloride and greater than 1000 over
fluoride. Only lodide and sulfide ions could interfere if present,
but these were not expected. Calibration was carried out and
checked after every 5-6 samples using fresh analytical standard
solutions of aqueous HBr. The measurement had a relative precision
of approximately + 5%.

Cnlcside ion content was measured with a silver/silver chloride
electrcde prepared in a manner similar to the bromide electrode
used above., However, prior to the chloride measurement, if
bromide was present it was removed by mixing 10 ml of sample with
10 m} of 3N HNO,, evaporating (without boiling) on a hot plate to
10 mt and then ailuting to 25 ml with deionized water for subse~
quent measurement, _Ehis procedure had been tested on a solution
zontaining 1.1 x 10 ™ M HC1 and 1.1 x 10-2 M HBr. After carrying
s«t the bromide removal procedure, the concentrations of HX left

‘~orrected back to the initial 10-ml sample volumes) ware 1.1 x 10_2

¥ HCl and <5 x 1076 M HBr. This treatment should also remove
indide and sulfide which would be serious interferences if present.
. libratrion was performed by using fresh analvtical standard

s luvinne of aqueous HC1,

37




[ .

. p— e

.- R I

Measurement of Smoke

Smoke buildup in the cabin was monitored by two simple photometers
which responded to the increasing optical density of the cabin
atmosphere as smoke developed. Each photometer consisted of a
light source and a photocell positioned at opposite ends of the
cabins. A collimated light beam from the source was directed down
the length of the center of the cabin and impinged upon a photo-
tube detector in the receiver. The decrease in light intensity
reaching the detector as a result of smoke buildup was read out as a
decrease in percent transmission on a calibrated millivolt scanner
recorder. For the CH-47 helicopter, two photometer systems were
utilized: one positioned 1 foot above the cabin floor and the
second 4 feet above the floor. The photocell was 20 feet away from
the light source. Only one photometer was used in the UH-ID
postcrash fire test. Thls was placed at the 2-foot level from the
floor with the photocell 4-1/2 feet away from the light source.

The photometer systems were similar to the one used in the small-
scale furnace measurements except for modifications in the trans-
mission optics to minimize divergence of the light beam over the

longer path lengths involved in these tests.

Each photometer was calibrated immediately before the test by
generating a calibration curve of percent trarsmission versus
recorder reading in millivolts. 1In addition ito the obvious points

of 0% and 100% transmission, neutral density filters were used to
generate calibration points at five intermediate transmission values.

THERMAL INSTRUMENTATION

Temperature

Since the air temperature of the habitable compartment of a
helicopter engulfed by flames or threatened by a fire in an adjacent
compartment is of particular concern in determining its habitability,
a number of chromel-alumel thermocouples were placed at carefully
selected points inside each helicopter and at strategic locations

on the interior walls. Other thermocouples were used to measure
flame temperatures outside the helicopter or in the burning com-
partment. For the CH-47 prstcrash fire test, thermocouples were
also placed in the video camera compartment,

The distribution of the thermocouples used in the UH-1D in-flight
fire tests is shown in Figure 20 for one test. In the second test,
the thermocouples were placed in symmetrical positions, in the
other half of the helicopter. The distributions of thermocouples
in the helicopters during the postcrash simulation fires are

shown in Figures 21 and 22,
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Total Heat Flux

Another important factor in determining the habitability of a
helicopter compartment during a fire is the total heat flux that
may impinge on the human skin. A calibrated heat flux meter was
located at the 6-foot level in the CH-47, facing the roof of the
helicopter. Additional simple calorimeters were utilized to
measure heat flux at other points. These calorimeters consisted
of small blackened brass spheres of known mass. A thermocouple
was imbedded in the sphere and the heat flux to the sphere at any
moment was calculated from the temperature record during the fire
and the equation

c— _A_’Es.
Q= MCp A0 qA

where

0 = total rate of heat transfer (Btu/hr)

M = mass of the brass sphere (1b)
CP = gpecific heat of brass (Btu/1b°F)
AT

ol slope of the temperature time curve at
a particular instant in time (°F/hr)

g = heat flux (Btu/hr sq ft)

A = area of sphere

Figures 20, 21, and 22 show the locaticns of these heat flux meters.

PHOTOGRAPHIC AND VIDEO (.OVERAGE

Exterior photographic coverage of ail four tests and interior video
coverage of the CH-47 postcrash fire :est were carried out. Color
16-mm movie film and 35-mm slides were taken of the helicopter
exteriors before, during and after each fire. The interior was
also photographed before and after eacn fire.

A wide-angle video camera housed in a wvell protected enclosure was
installed in the aft section of the Ck-47 helicopter. A l-inch
video recorder and monitor was used to tape and monitor the sequence
of events in the interior of the CH-47 during the postcrash simula-
tion fire,
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DATA ACQUISITION

The output of the thermocouples, heat flux meters and smoke detec-
tors was channeled to a terminal strip within the helicopter.

Lead (exvension) cables as well as gas sampling tubes and power
lines for the vacuum pump and light sources were run through a
3-3/4~inch I.D, iron tube which extended some 50 feet from the
helicopter interior to a protected instrumentation area. The tube
was insulated to protect its contents from the fire.

The electrical extension cables were two conductor-shielded cables
which minimized noise from extraneous electrical signals. Thermno-
couple and heat flux leads were connected to a VIDAR scanner which
had been calibrated (NBS traceable).

The VIDAR recorded the data on magnetic tape which was read out
later and the data printed out. It also recorded the time at the
beginning of each scan. In addition to the VIDAR, the output of
selected thermocouples was recorded on a strip chart recorder as
a safeguard against the loss of the VIDAR data. Output from the
smoke detectors was recorded on a separate stvip chart recorder.

POWER SUPPLY

Power was needed to run three vacuum pumps, four 100-watt lamps
in the interior of the CH-47, the light sources fol the smoke
detectors, the VIDAR scanner, a cooling water circulation pump
for the heat flux meter, and the video system. A gasoline-driven
power generator was used after it had been tested for constancy
of voltage and frequency and shown to operate satisfactorily with
all the recording equipment.
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RESULTS

IN-FLIGHT FIRE SIMULATION TESTS

Figures 23 and 24 show temperatures of the various locations in
the UH-1D helicopter throughout the two separate in-flight simu-
lation tests., These locations have been identified in Figure 20.
Figures 25 and 26 show the heat flux variation with time for each
test as measured by the brass spheres and heat flux meter. As
indicated earlier, both tests were conducted with the doors closed
to allow better thermal measurements in the absence of wind.

Smoke and toxic gases were not measured in these tests because it
was assumed that in real-life the occupants would have opened the
doors of the helicopter in case of an In-flignt fire in preparation
for egress after landing or to prevent smoke accumulation.

It should be noted that the heat flux data from the brass sphere
is lower than the data from the total heat flux meter. This is
because the meter was facing the hot wall of the fire compartment
throughout the test, whereas the sphere could see the rest of the
compartment which remained cold. Thus, the radiant component of
heat fiux was greater for the meter than for the sphere while the
convective component was about the same.

Comparison of the data from the two tests shows that there are
marked differences in the behavior of the two fires and in the
corresponding temperatures and heat fluxes recorded inside the
helicopter., It should be recalled that the in-flight fire com-
partment used In the flrst test had no cover, thus allowing more
complete combustion of the fuel and higher temperatures to be
recorded in both the fire and habitable compartments. The seconud
compartment was partially covered, ihus restricting the flow of
air into the fire compartment. The flame was sootier than in the
previous test. It was also noted that some unburnt fuel had
accumulated in the bottom of the compartment at the conclusion of
the second test. Although such a fuel-rich fire was expected to
produce lower temperatures in the fire compartment, it is believed
that the liquid JP-4 spray impinged on thermocouple 1 during this
test, providing an unrealistic low temperature for the fire com-
partment,

The first in-flight test which utilized a coating of Albi mastic

on the walls of the fire compartment resulted in the accumulation
of large amounts of white smoke within the cabin., This is believed
to have resulted from heating the ICU foam which had already been
sprayed in the floor space in preparation for the large-scale tests
and from the mastic itself. Also, there were direct penetrations
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between the left compartment, the floor space and the habitable
cabin. No such penetrations were present in the second case when
BASF fire plate was used.

In both tests, air temperatures (and temperature rises) and heat
fluxes recorded within the habitable cabin were far below human
tolerable levels. One of the authors remained within the heli-
copter with the doors closed for the 5-minute duration of the
second test without any discomfort.

It is concluded that in-flight fires can be protected against by

lining the walls of potential fire compartments with intumescent

mastic coatings (e.g., Albi Clad 89-X) or with an intumescent in-
organic panel (e.g., BASF fire plate).

CH-47 PCSTCRASH FIRE

Thermal Measurements

Temperatures taken at the various locations identified in Figure 21
and as recorded on the Vidar are plotted in Figures 27, 28 and 29.
Heat flux measurements made with the brass spheres and the heat
flux meter are shown in Figure 30. It should be noted that the
heat fluxes recorded by the heat flux meter in this case were below
those of the brass spheres at the same position. This is because
the meter was pointing at a cooler spot on the wall while the
sphere was receiving radiation from all hot walls,

It is noted fr m these plots that the duration of the data is only
160 seconds*, when the fire actually proceeded for more than 20
minutes, The reason for this is that power was lost due to a
short in the line leading to a water circulating pump placed within
the helicopter for cooling the heat flux meter,

By the time the shorted line was disconnected (after a lapse of
about 5 minutes) the fire was of such intensity that the aluminum
foil/glass wool mineral insulation on the iron pipe protecting the
lead cables and thermocouples had melted and the PVC insulation on
most thermocouple extension wires within the pipe had melted, thus
shorting these leads.

The cause of the power failure could not be identified until the
video tape recording of the interior was played back in slow motion.
The tape showed that early in the fire an explosion had occurred

* Since the Vidar was set to record data every 10 seconds, the
maximum duration of the data may have been 180 seconds (3 minutes).
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within the helicopter. By back~timing the videotape from the
moment power was lost, it was found that the explosion must have
taken place within 15.7 seconds from ignition. An aluminum ribbed
panel had been used to cover the floor space where the cargo door
had been sealed and foamed to a height of about 4 inches, leaving
an air space of about 7 inches. Apparently, fuel vapor had
penetrated into this air space between the foam and the panel and
eventually ignited. Figures 31 to 33 show the position of this
space, the panel, and selected scenes from the video sequence.
This floor space continued to burn after the explosion and was the
only position within the helicopter that required extinguishment
by the standby fire fighters. The electrical wiring leading to
the pump motor was immediately above this space and is believed to
have burned because of the fire there.

Examination of the temperature data during the first 160 seconds
shows that the cabin air temperature (thermocouples 5, 6, 7) was
not excessive (<200°F) and by itself would not have been fatal,

The heat flux data as recorded by the brass sphere near the ceiling
was above tolerable limit for humans ("600-800 Btu/hr/sq ft). The
maximum heat flux level recorded (2527 Btu/hr/sq ft) was far below
the level (+10,000 Btu/hr/sq ft) necessary to ignite cellulosic
materials whirt may be present in a helicopter. Although the total
heat flux level would have caused serious burns to the exposed

skin surfaces of occupants, simple shielding of the hand. and head
would have prevented such burns. It is difficult to pradict thermal
conditions beyond the first 160 seconds because of the lack of
data. It can be assumed, however, that temperatures and heat
fluxes increased after that time and may have resached levels which
were harmful to occupants.

Smoke and Toxic Gases

Figure 34 shows percent light transmission across a 20-foot path
versus time. It can be seen that visibility dropped sharply after
the first 20 seconds, Light transmission dropped to 50% within

50 seconds at the 4-foot level and 63 seconds at the l-foc. level.
The video recording showed that the smoke developed immediately
after the explosion.

Tabtle VIII summarizes the concentrations of oxygen, €0,, CO, and

other reactive species generated in the CH-47. These results show
that while oxygen concentration remained adequate, the concentra-

tion of the reactive species Fl— ,Br—, CN—, and CO were above the
threshold limit values (TLV) for 8-hour exposure as adopted

by the American Conference of Governmental Industrial Hygienists
(ACGIH). These concentrations are not necessarily lethal for the
short duration involved. The major offender in this test was the high
concentration (average of 350 mg/m”) of particulates in the cabin air.
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Figure 33.

(Continued).

57

e

s

panel




Light Transmise on (percent}

e ma—

0

80 — 44—

70

Bottom Smoke Detector O
Top Detector A

_— S - + - IS G

|
1oL

Q

a o
A
‘ “ b (@) S
20 - _é“"?" - {( -
! a
a A A b
10 —_“ﬁr— -- -+ b -
!
0
[+] 20 40 60 80 100 120 140 160 180

Figure 34,

Time (seconds)

Light Transmission at the 4-Ft and 1-Ft Levels
During the CH-47 Postcrash Fire Test.
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Even though nothing is known about the synergistic effects of the
species identified, especially when combined with the temperature
levels recorded, it is felt that an occupant of the CH~47 heli-
copter could have survived this fire for the first three minutes
possibly with 1lst or 2nd degree facial and hand burns. The
unavailability of data beyond that time does not allow further
predictions.

CH-47 Integrity After Fire

VU O —

The helicopter walls were inspected carefully after the test.
Figures 35-41 show various scenes of the CH-47 interior and exterior.
Figure 35 shows the condition of the interior fire plate paneling
after the fire (the hole was made afterwards). Of particular
interest are Figures 36 and 37 which are ol the same location
during application of the protective walls and after the fire.
Dynaflex was used in the lower half, whereas the upper and adja-
cent sections were foamed with ICU foam. Both sections were
paneled with BASF fire plate on the interior. During the fire,
the Dynaflex fell to the outside as soon as the aluminum skin
melted. The BASr panel remained in place until fice fighters used
that opening to reach the floor space fire in the interior near
the end of the test. The overall photographs of both sides of the
helicopter (Figures 38 and 39) also show that it remained fairly
intact except where Dynaflex was used or where the foam had no

rib support. The cracks in the charred ICU foam (Figures 40 and
41) were not deep enough to reach the interior. There is no doubt
that if ICU foam could have been used on all sections of the heli-
copter walls, the conditions within the helicopter would have been
tenable for a longer period of time,
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TABLE VIII. TOXIC GASES AND PARTICULATES GENERATED IN THE CH-47 FIRE

Concentration

Reactive Species* 4-ft level 1-ft level TLV**
Fluoride (F17) 10 ppm 1.6 ppm 3 ppm
Chloride (C17) 5 ppm <2.> ppm 5 ppin
Bromide (Br™) 8 ppm 2.5 ppm 3 ppm
Cyanide (CN) 13 ppm 3 ppm 10 ppm
Ammonia (NH3) 40 ppm 20  ppm 50 ppm
Particulates* 4403170 mg/m3 6003200 mg/m3
Permanent Gases'
Oxygen (05) 20 % 17 2 -
Carbon

Monoxide (CO) .05% .057% .005%
Carbon

Dioxide (C02) 0.3 7% 0.2 % 5 %

* Total time for sample was 10 minutes. Sample collected for 3
minutes after ignition until power was lost. After return cf
power, sample collection continued for another 7 minutes.
Total velume of gas sampled = 30 liters.

f Sample tuken 3 minutes after ignition.

*% Threshold limit values for 8-hour exposure,
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Figure 35, C(H-47 Interior After Fire Looking
Teward Cockpit NDoor (Hole in Wall
Made by Firefighters).
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Figure 36.

Figure 37,
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B T T

CH-47 Interior Typical Wall
Construction Before Fire.

CH-47 Interior Typical Wall
Construction After Fire.
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Figure 38, Right Side of CH~47 After Fire.
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Figure 39. Left Side of CH-47 After Fire,
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Figure 40. Unribbed Section Where ICU Foam Could Not Support
Itself (Uncharred Foam Shows on Top Where Char Was
Removed After Fire).

Figure 41. Typical Cellular Structure of Charred ICU Foam.
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UH-1D POSTCRASH FIRE

Theraal Measurruents

Because the UH-1D is smaller in size than the CH-47, fewer
measurements were taken during the postcrash fire test. Locations

of the various measurements are shown in Figure 22. Figures 42, 43,
and 44 are plots of temperature versus time for the 8-minute dura-
tion of the test. Unlike the CH~47 test, all data were received

and recorded since the umbilical iron pipe containing all leads

and extensions was better protected. At the height of the fire, a
cooling water stream was directed at the pipe for further protection.

The temperature data show that the maximum cabin air temperature
(335°F) was that recorded by thermocouple 2 at 5 minutes after

the beginning of the test, This thermocouple was close to the
wall which received the maximum intensity of the fire because it
was on the lee side of the wind where hot vortices were observed,
Most other thermocouples recorded their maximum temperatures at
about the same time with the exception of thermocouple 9. This
thermocouple was placed on the floor above the ICU foam layer, and
thus read very low temperatures throughout the fire with its
maximum reading of 120°F occurring at 9 minutes 50 seconds. Thermo-
couple 7, which was placed in the center of the habitable compart-
ment, gave a maximum cabin air temperature of 273°F.

The heat f£lux meter was not used in this test to avoid the need
for a circulating pump for cooling water in the interior {and a
recurrence of the power failure encountered in the CH-47 test)

and because this test was expected to csuse extensive damage to
the helicopter and its contents. Only one brass sphere was used
and its data (Figure 45) gave a maximum reading of 478 Btu/hr sq ft.
The sphere was located near the upwind side of the helicopter (see
Figure 22) where wall temperatures were not as high as those on
the other side. It is expected that a sphere closer to the lee
wall would have received a higher level of thermal radiation and
convection and would have registered a higher total heat flux.

In summary, thermal measurements indicate that air temperatures

and the heat flux within the UH-1ID cabin during the first 3 minutes
were lower than those encountered in the CH-47 fire during the

same period. However, after 5 minutes the cabin air temperature
was too high for human tolerance and may have caused respiratory
injury to the occupants.

Smoke and Toxic Products

The variation in light transmission with time during the UH-1D
test is shown in Figure 46. Table IX shows the concentrations of
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Figure 44, Temperatures Recorded by Thermocouples
Outside the UH-1D Cabin.
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Figure 45. Total Heat Flux Measured by Brass Sphere

Calorimeter in the UH-1D Postcrash Fire Test.
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toxic gases and particulates generated in the UH-1D cabin during
this fire. It can be seen that large amounts of smoke and partic-
ulates were generated very early in this test also. The average
particulate concentration over a 7-minute period was 1600 mg/m

(see Table IX). Figure 46 shows that 50% light transmission
occurred at 30 seconds from ignition. The high levels of smoke

can be attributed to the absence of a tight seal between the doors
and the floor and the interior walls. Furthermore, unlike the
CH-47, the UH-1D bottom was raised above the ground by about 1 foot,
which is the height of th2 landing skids. This allowed JP-4 to
burn underneath the helicopter (until the skids collapsed), thus
pvrolyzing the ICU foam in the floor. Because of the high tempera-
tures to which the BASF fire ~late was exposed in this test,

larger quantities of steam w generated within the cabin than

in tbe CH-47 where fire pla.. was not exposed directly to the

fire. The steam generated in the UFH-1D may have contributed
significantly to the reduction in light transmission.

Because a smaller quantity of ICU foam was used in the UH-1D than
In the CH-47, smaller concentrations of the reactive species were
observed. However, because the UH-1D was not as air tight as the
CH-47, higher concentrations of carbon monoxide and carbon dicxide
were recorded, especially during the first three minutes. Never-
theless, the concentrations of the reactive species, CO, and CO9
were not considered to be high enough by themselves to pose &
threat of injury or fatality to occupants for the short duration
of the fire. However, combined with the high cabin air tempera-
tures and the presence of irritant particulates, permanent respi-~
ratory system damage is very likely to have resulted.

UH-1D Integrity After Fire

Figures 47 and 48 show the general condition of the UH-1D after

the fire. The skids collapsed after about three minutes from
ignition. Figure 47 shows the upwind side of the helicopter. The
aluminum sheets covering the windows were protected with Albi

mastic, while the section just below that was painted with Firehold
intumescent paint. Because of the wind direction, it js difficult to
assess the contribution of these wall treatments toward the survival
of the aluminum w.lls on this side, when the aluminum on the lee
(hotter) side was completely melted (cor-~2re Figure 47 and 48). The
BASF fire plate on the lee side sagged vecause of the absence of

any formers or ribs, However, penetrations were small and apparently
did not contribute much towards increasing overall air temperatures
or toxic product concentrations in the cabin.

Of the two compartments that were used to conduct the in-flight

fire simulation tests, only the one that was paneled with fire plate
wurvived. The unprotected front and aft sections of the helicopter
we re completely destroved in the fire.
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TABLE IX. TOXIC GASES AND PARTICULATES GENERATED IN THE UH-1D FIRE

ol
Concentrationt
Reactive Species* Probe {1 Probe #2 TLV**
Flucride (F17) 0.9 ppm 1.6 ppm 3 ppm
Chloride (cL™) <2.4 ppm <2.4 ppm 5 ppm
Bromide (Br ) 2.3 ppu 3.7 ppm 3 ppm
Cvanide (Ca7) 8 ppm 10 ppm 10 ppm
Ammonia (hH3) 40 ppm 20 ppm 50 ppm
Particulates* 2000, 1700, 800, mg/m3
Permanent Gates Carbon Carbon
Sample Oxygen Monoxide bioxide
Time Point (022* (CO) (002)
3 minutes Pruve #1 217% 0.13% 1.6%
after ignition Probe #2 20% 0.16% 1.6%
6 minutes Probe #1 20% <0.03% 1.1%
Probe #2 20% <0.03% 1.8%
9 minuces Probe #1 21% <0.032% 0.3%
Probe #2 21% <0.03% 0.2%
TLV** - .005% 5%

*Total time for sample was 7 minutes. Tota. volume of gas
sampied = 21 liters.

~% Threshold Limi: Values for 8-hour exposure.

T Sampling probes were close together and near the middle of the
helicopter.
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Figure 47, Upwind Side of UH-1D After

Postcrash Fire Test.

Figure 48,

ee Side of UH-1D After Test Showing
Absence of Aluminum Walls and Sagging
Fire Plate Walls,
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CONCLUSIONS AND RECOMMENDATIONS

The results of the in-flight and postcrash fire tests conducted on
the UH-1D and CH-47 lead us to the following conclusions:

1. Fires occurring during  light in compartments other
than the habitable compartment can be protected
against by lining potential fire compartments with
an intumescent mastic coating or a sodium silicate
hydrate panel,

2. Presently used Plexiglas windows are the weakest
points in a helicopter during a postcrash fire.

3. If windows can be protected appropriately, the
survivability of occupants in postcrash fires can
be increased significantly by insulating the
interior walls with isocyanurate foams and sodium
silicate hydrate panels. However, the unreliability
in performance of the protective wall materials
(especially in areas where wiring and tubing have
to be left accessible or where the walls have been
damaged by the crash), the unknown effects on
humans cf smoke and particulates, and the weight
and cos. penalties render such an approach subject
to serious questions.

Our recommendations are as follows:

1. The protection against in-flight fire should be
pursued further by the U. S. Army. Recommended
materials should be further tested against fires
in various types of compartments and the weather-
ability of the materials evaluated.

2, Protection of the interior walls of the habitable
compartment against postcrash fires should not be
pursued any further.

3. Approaches toward enhancing the survivability of
occupants should involve the developuent of personal
protective clothing and masks, the improvement of the
crashworthiness of the fuel tanks, and the uwtiliza-
tion of active fire suppression devices on board.
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